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The effectiveness of antibiotics against bacterial infections has

been declining due to the emergence of resistance. Precisely

understanding the response of bacteria to antibiotics is critical

to maximizing antibiotic-induced bacterial eradication while

minimizing the emergence of antibiotic resistance. Cell-to-cell

heterogeneity in antibiotic susceptibility is observed across

various bacterial species for a wide range of antibiotics.

Heterogeneity in antibiotic susceptibility is not always due to

the genetic differences. Rather, it can be caused by non-

genetic mechanisms such as stochastic gene expression and

biased partitioning upon cell division. Heterogeneous

susceptibility leads to the stochastic growth and death of

individual cells and stochastic fluctuations in population size.

These fluctuations have important implications for the

eradication of bacterial populations and the emergence of

genotypic resistance.
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Introduction
Although it is commonly assumed that genetically iden-

tical cells would display the same level of antibiotic

susceptibility or resistance, this is not well supported

by experimental observations. When a bacterial culture

is plated on solid media containing increasing concentra-

tions of a bactericidal drug, the percentage of colony-

forming cells, that is, plating efficiency (PE), decreases

gradually [1,2]. Consider an intermediate concentration at
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which the PE was 10%. This means that 10% of plated

cells resisted antibiotic exposure and grew to form colo-

nies, whereas 90% of plated cells were susceptible, sug-

gesting heterogeneous susceptibility. If these survivor

cells had acquired resistance through genetic mutation

or horizontal gene transfer (genotypic resistance), then

the subsequent plating of these survivor cells to solid

media with the same antibiotic concentration would

result in PE substantially higher than the original popu-

lation. Instead, when these 10% survivors were re-plated,

the PE remained similar (�10%), indicating that their

resistance (i.e. ability to grow in presence of antibiotic) is

transient and easily lost within several generations [3��].

Heterogeneity in antibiotic susceptibility is also observed

in commonly used susceptibility tests. The minimal

inhibitory concentration (MIC) is defined as the lowest

antibiotic concentration that inhibits population growth

[4]. It is often used as a simple diagnostic measure of

antibiotic susceptibility to predict binary outcomes

(whether a bacterial population would grow or not at a

given antibiotic concentration). Despite this simple defi-

nition, the MIC value is known to vary substantially even

for the same reference strains [5,6] (e.g. MIC of colistin

for a quality control Escherichia coli strain can range 0.25–1

mg/mL [7]). While different practices in laboratories

could contribute to the variation, the variation persists

even between the identical technical replicates in a single

experiment, suggesting that antibiotic susceptibility is

inherently heterogeneous [8��,9,10].

Time-lapse single-cell microscopy enables us to track

growth and death of individual cells in real time and

has been instrumental for establishing cell-to-cell hetero-

geneity in antibiotic susceptibility. Single-cell-level mon-

itoring confirms that when exposed to antibiotics, some

cells are killed, while other cells resist the antibiotic

exposure and grow even at the MIC [3��,11]. However,

these growing cells resisting the antibiotic exposure could

spontaneously die in the next few generations (i.e. resis-

tance is transient). In the field of antibiotic resistance, the

term phenotypic resistance is used to describe a subpopula-

tion of cells which grows in the presence of antibiotics

without genetic alteration [12]. Phenotypic resistance we

describe here is different from bacterial persistence,

where cells become tolerant to antibiotics by virtue of

not growing [13,14]. Additionally, there are several other

characteristics that distinguish resistance from
www.sciencedirect.com
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persistence, which are well articulated in a recent review

paper of persistence [15]. Likewise, we apply the term

phenotypic resistance to cells that continue to grow in the

presence of antibiotics.

Mechanisms underlying cell-to-cell
heterogeneity in antibiotic susceptibility
Heterogeneity in phenotypic traits within a clonal popula-

tion and its mechanism have been studied previously.

When a lac operon inducer (e.g. TMG) is added to an

E. coli culture, a subpopulation primed to utilize lactose

emerges [16,17]. Studies have established stochastic gene

expression, such asfluctuations in themRNA copy number,

as a mechanism for phenotypic heterogeneity [18–20].

Additional studies found that stochastic gene expression

results in heterogeneity in phenotypic traits [21,22].

Several studies demonstrated the importance of stochas-

tic gene expression in the heterogeneity in antibiotic

susceptibility. The cell envelope, particularly the outer

membrane of gram-negative bacteria, limits the entry of

antibiotics into the cytoplasm. Porins enable antibiotic

molecules to cross the outer membrane [23,24]. The

expression of porins is shown to be stochastic; some cells

express higher levels of porins than others, which

increases their sensitivity to antibiotics [25]. In addition,

intracellular antibiotic concentration is modulated by

efflux pumps, which extrude antibiotic molecules out

of cells. AcrAB-TolC is one of the resistance-nodula-

tion-division (RND) family of efflux pumps associated

with multi-drug resistance in gram-negative bacteria

[26,27]. The promoter activity and the abundance of

AcrB were shown to be heterogeneous affecting the

antibiotic susceptibility of individual cells [28�,29]. Of

note, recent studies have shown that the gene copy

number can increase in a subpopulation of cells exposed

to antibiotics [30�]. This form of genotypic resistance

could further amplify the variation in the abundance of

gene products, making antibiotic susceptibility of indi-

vidual cells more heterogeneous.

For some antibiotics, the expression of endogenous genes

is necessary to function. The abundance of their gene

products determines the degree of antibiotic susceptibil-

ity. For instance, isoniazid, an anti-mycobacterial drug,

requires the activation by catalase-peroxidase, KatG.

Expression of KatG was found to be heterogeneous

between mycobacterial cells, and its expression level

was positively correlated with antibiotic susceptibility

of individual cells [31].

Since the timescale of fluctuations in gene expression is

relatively short (� one generation time) [32,33], the

change in antibiotic susceptibility of cells would be

ephemeral. However, the timescale could be extended

through various mechanisms such as positive feedback.

Self-reinforcement of fluctuations by positive feedback
www.sciencedirect.com 
can generate and stabilize two distinct states, that is, bi-

stability; see Ref. [34] for a review of positive feedback.

When the expression of genes that confer resistance is

activated through positive feedback via gene regulatory

network [35,36] or innate growth-mediated regulation

[37], some cells express high levels of resistance proteins

for an extended period of time, which leads to the stable

maintenance of phenotypic resistance. Importantly, a

feedback does not always require the expression of resis-

tance genes. For example, theoretical work predicted

that, for antibiotics with low membrane permeability, a

feedback between slow influx and growth-mediated dilu-

tion of antibiotic molecules could lead to the emergence

of a subpopulation that continues to grow at high (exter-

nal) antibiotic concentrations [38].

Biased partitioning is another factor that can amplify

heterogeneity in antibiotic susceptibility. Not every cel-

lular component is partitioned equally between two

daughter cells during cell division. TolC, a component

of the AcrAB-TolC efflux pump, preferentially accumu-

lates at an old cell pole of E. coli [29]. As a result, cells that

inherit an old pole (a.k.a. old daughter cell) have a

stronger efflux activity and exhibit higher rates of survival

and growth in the presence of antibiotics.

Misfolded and damaged proteins form aggregates when

cells are exposed to stresses such as aminoglycosides and

heat shock [39,40]. These aggregates are segregated to

cell poles and asymmetrically partitioned between cells

during division, leading to aging (i.e. loss of fitness) of an

old daughter cell, while a new daughter cell (i.e. a cell

with new poles), devoid of cellular damage, exhibits

rejuvenation [41,42�,43]. Such asymmetric allocation of

cellular damage leads to fluctuations in cell growth

[40,42�]. Asymmetric allocation of cellular components

is essentially ‘robbing Peter to pay Paul’. Increasing

resistance in some cells comes at the cost of lower resis-

tance in others. It is unclear whether it is beneficial to a

population as a whole. A recent analysis shows that

asymmetric allocation can increase the overall population

fitness in the presence of lethal levels of damage, suggest-

ing asymmetric allocation as an adaptive mechanism

enhancing population survival under antibiotic exposure

[42�].

Implication of heterogeneous susceptibility
for population dynamics
The implication of heterogeneous susceptibility for pop-

ulation dynamics of bacteria has been quantitatively

described [3��]. When a bacterial population is exposed

to an antibiotic, some cells die, while others grow. The

stochastic cell growth and death lead to fluctuations in the

number of live cells, n, in a population [3��] (Figure 1).

Here, the state, n = 0, is equivalent to an absorbing
boundary in stochastic physics [44,45]. Once a system

reaches an absorbing boundary, the system cannot come
Current Opinion in Microbiology 2021, 63:104–108
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Population dynamics of antibiotic-exposed bacteria depend on the

population size (n). At the MIC, cell growth rate is equal to death rate

(l = ’). When n is small (i.e. a small population), it is subject to

fluctuations and incidentally reaches the absorbing boundary (n = 0),

which indicates the eradication of the population (red). On the other

hand, in a large population, fluctuations are averaged out, and

population size is maintained (black).
out of the state and permanently remains at the boundary.

Likewise, once population size reaches n = 0, the popu-

lation goes extinct and cannot revive. Because of the

stochastic growth and death of cells under antibiotic

treatment, n randomly fluctuates and incidentally reaches

this state (n = 0). When the antibiotic concentration is

sublethal, some populations reach n = 0 and go extinct,

whereas other populations manage to avoid extinction

and ultimately flourish. It becomes harder for a popula-

tion to avoid this absorbing boundary as the antibiotic

concentration increases, which results in a gradual

decrease in the fraction of live and growing cells. At

lethal antibiotic concentrations, all populations eventu-

ally get eradicated but the time of eradication varies

dramatically. Importantly, due to the stochastic and dis-

crete nature of growth and death, it is challenging to make

a deterministic prediction about population eradication

under antibiotic treatment. Quantitative prediction may

still be made, not deterministically, but probabilistically.

The study by Coates et al. experimentally measured the

probability of population eradication and used a simple

model for stochastic growth and death to explain the

experimental observation [3��]. A similar model was used

in another study to analyze the probability distribution of

population eradication time [46]. While these models

provide a conceptual understanding of stochastic popula-

tion dynamics during antibiotic treatment, further studies

are needed to evaluate their quantitative predictive

power.

The gained knowledge of population dynamics can be

extended to improve our understanding of MIC and its

relation to antibiotic susceptibility. Typically, cultures

with inoculum size of 5 � 105 cells/mL are grown in the

presence of antibiotics for 16–20 hours to determine the
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MIC using a broth dilution method [4]. In recent years,

various approaches were developed to rapidly determine

the antibiotic susceptibility with a smaller population size

using microfluidic devices [47–49]. However, comparing

the antibiotic susceptibility from different approaches

requires a detailed understanding of how population

dynamics vary in different regimes. As discussed above,

the MIC is defined as the lowest concentration of antibi-

otic which inhibits the growth of a bacterial population.

Theoretically, this is the critical concentration at which

the growth rate of cells l is equal to the death rate ’ (l =

’) (a.k.a. pharmacodynamic MIC or stationary concentra-

tion [50,51]). Under this condition (l = ’), small popula-

tions undergo extinction due to the stochastic population

fluctuations and the presence of absorbing boundary

(discussed above). In a large population, however, fluc-

tuations become averaged out, and thus the population

size is stably maintained (Figure 1). This means

that under the same condition that defines the MIC

(l = ’), large and small populations exhibit different

dynamics (maintenance versus eradication). Importantly,

a recent study demonstrated the involvement of stochas-

tic population dynamics in the inoculum effect, indepen-

dent of inoculum density [8��].

This raises a question: ‘How large should the population

size be to escape extinction by random fluctuations?’

Unfortunately, there is no clear cut-off value [3��]. When

the death rate is small (at antibiotic concentrations far

below the MIC), where all cells grow, the population size

n increases with minimal fluctuations even for small

populations. As the death rate approaches the growth

rate (near the MIC), fluctuations are amplified. It has

been experimentally shown that an initial population

consisting of up to 6 � 105 cell/mL experiences fluctua-

tions near the MIC [3��,8��]. Currently, we do not know

whether fluctuations persist in a population with the size

relevant to the clinical settings (e.g. �108 cell/mL in

mature infections [52–56]).

Heterogeneous susceptibility can significantly impact

the emergence of genotypic resistance as well. For

example, cells that transiently gained phenotypic resis-

tance are more likely to mutate and develop genotypic

resistance [28�]. Furthermore, the establishment of a

resistant population requires the survival and reproduc-

tion of the first mutant cell. Even after the acquisition of

resistance, the mutant cell is subject to the stochastic cell

growth and death (although the death rate is lower than

parental cells), which influences the probability of a rare

resistant mutant to outgrow and achieve fixation [8��].
Importantly, it was theoretically determined that the

fixation probability is affected by how antibiotics are

delivered (e.g. whether it was administered constantly or

in alteration) [57]. Collectively, these studies highlight

the important effects of heterogeneous susceptibility on

the emergence of genotypic resistance.
www.sciencedirect.com
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Discussion
In order to develop optimal treatment plans that maxi-

mize bacterial eradication while minimizing the emer-

gence of antibiotic resistance, a detailed understanding of

antibiotic susceptibility is crucial. Cell-to-cell heteroge-

neity in antibiotic susceptibility has been observed for a

variety of antibiotics against many bacterial species.

Studying this phenomenon has been challenging due

to the necessity of specialized skill sets for quantitative

measurements and analyses at the single-cell level,

including advanced microscopy, mathematical modeling

of stochastic processes, and statistical assessment. Recent

quantitative studies are advancing our understanding of

single-cell-level responses and their effects on population

behaviors. Interestingly, studies suggest that heteroge-

neous susceptibility is not limited to bacteria under

antibiotic treatment; similar phenomena have been

reported for anti-cancer drugs [58,59]. A deeper under-

standing could have an important implication for subjects

beyond antibiotic resistance, including cancer treatment.
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